Senin, 18 April 2016

Pesawat Sederhana

Pesawat Sederhana

Pesawat sederhana adalah alat sederhana yang dipergunakan untuk mempermudah manusia melakukan usaha.
Pesawat sederhana berdasarkan prinsip kerjanya dibedakan menjadi : tuas/pengungkit, bidang miring, katrol dan roda berporos/roda bergandar. Pesawat sederhana mempunyai keuntungan mekanik yang didapatkan dari perbandingan antara gaya beban dengan gaya kuasa sehingga memperingan kerja manusia. Untuk lebih jelasnya mari kita bahas satu per satu.

Hambatan dan Hukum OHM

Hambatan dan Hukum Ohm

Hambatan

Pernahkah kamu memikirkan, mengapa lampu listrik dapat menyala jika ada arus listrik? Di dalam lampu terdapat kawat halus yang disebut filamen.

Jika terdapat arus listrik pada rangkaian, maka muatanmuatan listrik melewati filamen lampu tersebut. Pada saat melewati filamen, energi listrik yang dikandung muatan listrik berubah menjadi energi panas dan cahaya.

Berpijarnya filamen ini mirip dengan air sungai di pegunungan yang melewati bebatuan, dan kamu mendengar bunyi gemericik air.

Gelombang Tranversal

Spektrum Elektromagnetik

GLBB

engertian Konduksi, Konveksi, Radiasi

Konduksi adalah perpindahan kalor melalui zat penghantar tanpa disertai perpindahan bagian-bagian zat itu. Perpindahan kalor dengan cara konduksi pada umumnya terjadi pada zat padat. Suatu zat dapat menghantar kalor disebut konduktor, seperti berbagai jenis logam. Sedangkan zat penghantar kalor yang buruk disebut isolator, pada umumnya benda-benda non logam. Contoh konduksi adalah memanaskan batang besi di atas nyala api. Apabila salah satu ujung besi dipanaskan, kemudian ujung yang lain dipegang, maka semakin lama ujung yang dipegang semakin panas. Hal ini menunjukkan bahwa kalor atau panas berpindah dari ujung besi yang dipanaskan ke ujung besi yang dipegang.
Konduksi
Pengertian konveksi adalah perpindahan kalor melalui zat penghantar yang disertai dengan perpindahan bagian-bagian zat itu. Pada umumnya zat penghantar yang dipakai berupa zat cair dan gas. Kalor berpindah karena adanya aliran zat yang dipanaskan akibat adanya perbedaan massa jenis (berat jenis). Massa jenis bagian yang dipanaskan lebih kecil daripada massa jenis bagian zat yang tidak dipanaskan. Contoh konveksi adalah memanaskan air dalam panci hingga mendidih. Peristiwa sehari-hari yang berhubungan dengan konveksi kalor adalah terjadinya angin darat dan angin kalor.
Pengertian radiasi adalah perpindahan kalor tanpa memerlukan zat perantara. Pancaran kalor hanya terjadi dalam gas atau ruang hampa, misalnya penghantaran panas matahari ke bumi melalui ruang hampa udara. Alat yang digunakan untuk mengetahui adanya pancaran kalor yang dinamakan termoskop. Termoskop diferensial dipakai untuk menyelidiki sifat pancaran berbagai permukaan. Contoh radiasi adalah perpindahan panas dari cahaya matahari ke bumi. Radiasi kalor juga dapat terjadi pada lampu pijar listrik yang sedang menyala dan api unggun yang sedang menyala. Pada saat kita berada di sekitar api unggun yang sedang menyala, tubuh kita terasa hangat karena adanya radiasi kalor yang dipancarkan oleh api unggun.

Sinar X

Interaksi sinar-X


 A. Mekanisme Penyinaran sinar-X
Sinar-X yang dipancarkan dari sistem pembangkit sinar-X merupakan pancaran foton dari interaksi elektron dengan inti atom di anoda. Pancaran foton tiap satuan luas disebut penyinaran atau exposure. Foton yang dihasilkan dari sistem pembangkit sinar-X dipancarkan ketika elektron menumbuk anoda. Beda tegangan antara katoda dan anoda menetukan besar energi sinar-X, juga mempengaruhi pancaran sinar-X. Dilihat dari spektrumnya sinar-X dibedakan menjadi 2 yaitu sinar-X kontinyu dan sinar-X karasteristik.
Sinar-X merupakan gelombang elektromagnetik dengan panjang gelombang yang pendek. Hal ini dipertegas dengan penelitian Friedsish dan Knipýing pada tahun 1912, yang mengemukakan bahwa panjang gelombang sinar-X sama dengan sinar ultraviolet yaitu gelombang elektromagnetik dengan panjang gelombang yang pendek (Van Der Plassts, 1972).
Interaksi dengan materi terjadi bila sinar-X ditembakkan pada suatu bahan. Sinar-X yang ditembakkan mempunyai energi yang lebih tinggi sehingga mampu mengeksitasi elektron-elektron dalam atom sasarannya.

B. Pembentukan Sinar-X
Sinar-X ditemukan pertama kali oleh Wilhelm C. Rontgen pada tahun 1895 dari universitas Worzburg jerman. Penemuan ini berawal dari pemberian beda potensial antara katoda dan anoda hingga beberapa kilovolt pada tabung sinar-X. Perbedaan potensial yang besar ini mampu menimbulkan arus elektron sehingga elektron-elektron yang dipancarkan akibat pemanasan filamen akan dipercepat menuju target dalam sebuah tabung hampa udara. Gambar 2.1 berikut ini adalah
 
Keterangan gambar:
1. Katoda                     4. Keping wolfarm       7. Anoda
2. Filamen                    5. Ruang hampa           8. Diapragma
3. Bidang fokus           6. Selubung                  9. Berkas sinar guna
Prinsip kerja dari pembangkit sinar-X dapat dijelaskan sebagai berikut, beda potensial yang diberikan antara katoda dan anoda menggunakan sumber yang bertegangan tinggi. Produksi sinar-X dihasilkan dalam suatu tabung berisi suatu perlengkapan yang diperlukan untuk menghasilkan sinar-X yaitu bahan penghenti atau sasaran dan ruang hampa.
Elektron bebas terjadi karena emisi dari filamen yang dipanaskan. Dengan sistem fokus, elektron bebas yang dipancarkan terpusat menuju anoda. Gerakan elektron ini akan dipercepat dari katoda menuju anoda bila antara katoda dan anoda diberi beda potensial yang cukup besar. Gerakan elektron yang berkecepatan tinggi dihentikan oleh suatu bahan yang ditempatkan pada anoda. Tumbukan antara elektron dengan anoda ini menghasilkan sinar-X, pada tumbukan antara elektron dengan sasaran akan ada energi yang hilang. Energi ini akan diserap oleh sasaran dan berubah menjadi panas sehingga bahan sasaran akan mudah memuai. Untuk menghindarinya bahan sasaran dipilih yang berbentuk padat. Bahan yang biasa digunakan sebagai anoda adalah platina, wolfram, atau tungsten.
Untuk menghasilkan energi sinar-X yang lebih besar, tegangan yang diberikan ditingkatkan sehingga menghasilkan elektron dengan kecepatan yang lebih tinggi. Dengan demikian energi kinetik yang dapat diubah menjadi sinar-X juga lebih besar.
 
A.     Interaksi Sinar-X dengan Bahan
Interaksi sinar-X dengan materi akan terjadi bila sinar-X yang dipancarkan dari tabung dikenakan pada suatu objek. Sinar-X yang terpancar merupakan panjang gelombang elektromagnetik dengan energi yang cukup besar. Gelombang elektromagnnetik ini dinamakan foton. Foton ini tidak bermuatan listrik dan merambat menurut garis lurus.
Bila sinar-X mengenai suatu objek, akan terjadi interaksi antara foton dengan atom-atom dengan objek tersebut. Interaksi ini menyebabkan foton akan kehilangan energi yang dimiliki oleh foton. Besarnya energi yang diserap tiap satuan massa dinyatakan sebagai satuan dosis serap, disingkat Gray. Dalam jaringan tubuh manusia, dosis serap dapat diartikan sebagai adanya 1 joule energi radiasi yang diserap 1 kg jaringan tubuh (BATAN).
1 gray =1 joule / kg
Interaksi radiasi dengan materi tergantung pada energi radiasi, Jika berkas sinar-X melalui bahan akan terjadi proses utama yakni:
1.      Efek foto listrik
Dalam proses foto listrik energi foton diserap oleh atom yaitu elektron, sehingga elektron tersebut dilepaskan dari ikatannya dengan atom. Elektron yang keluar dari atom disebut foton elektron. Peristiwa efek foto listrik ini terjadi pada energi radiasi rendah (E < 1 MeV ) dan nomor atom besar.
 
Bila foton mengenai elektron dalam suatu orbit dalam atom, sebagian energi foton (Q) digunakan untuk mengeluarkan elektron dari atom dan sisanya dibawa oleh elektron sebagai energi kinetik nya. Seluruh energi foton dipakai dalam proses tersebut:
E = hf = Q +Ek
Dengan:
Q = energi ikat elektron,
Ek = energi kinetik
E = energi (joule)
F = frekwensi (hertz)
h = konstanta plank (6,627 x 10-34 J.s)
Faktor-faktor yang mempengaruhi efek fotolistrik :
a.                        Nomor atom / ketebalan bahan yang dikenai
Jika nomor atom/ketebalan bahan yang dikenainya semakin tinggi sementara faktor lainnya tetap, maka kemampuan kejadian penyerapan fotolistrik akan bertambah
b.                       Enersi foton sinar-X yang mengenai bahan
Jika enersi foton sinar-X yang mengenai bahan semakin tinggi sementara faktor lainnya tetap, maka kemampuan menembus akan semakin besar, sehingga kemungkinan kejadian penyerapan foton listrik akan berkurang.
Dalam radiografi, tulang (calsium) akan lebih banyak menyerap enersi sinar-X bila dibandingkan dengan jaringan lunak yang terdiri dari otot dan lemak. Akibatnya jumlah enersi yang melewati jaringan lunak lebih banyak, yang mengenai film juga lebih banyak, sehingga gambar jaringan lunak pada fim lebih hitam.
Penyerapan pada tulang dan jaringan lunak :
  • Pada eksposi diagnostik (40-100 KeV), kejadian fotolistrik pada tulang lebih kurang 7 kali lebih besar daripada kejadian fotolistrik pada jaringan lunak. 
  •  Pada eksposi 60 kV, jaringan lunak tidak mampu lagi menyerap sinar-X, dan pada eksposi 120 kV ketas, tulang dan jaringan lunak sudah tidak dapat menyerap sinar-X